A Random Forest Sub-Golgi Protein Classifier Optimized via Dipeptide and Amino Acid Composition Features
نویسندگان
چکیده
منابع مشابه
A protein fold classifier formed by fusing different modes of pseudo amino acid composition via PSSM
Protein function is related to its chemical reaction to the surrounding environment including other proteins. On the other hand, this depends on the spatial shape and tertiary structure of protein and folding of its constituent components in space. The correct identification of protein domain fold solely using extracted information from protein sequence is a complicated and controversial task i...
متن کاملThresholding a Random Forest Classifier
The original Random Forest derives the final result with respect to the number of leaf nodes voted for the corresponding class. Each leaf node is treated equally and the class with the most number of votes wins. Certain leaf nodes in the topology have better classification accuracies and others often lead to a wrong decision. Also the performance of the forest for different classes differs due ...
متن کاملClassification of nuclear receptors based on amino acid composition and dipeptide composition.
Nuclear receptors are key transcription factors that regulate crucial gene networks responsible for cell growth, differentiation, and homeostasis. Nuclear receptors form a superfamily of phylogenetically related proteins and control functions associated with major diseases (e.g. diabetes, osteoporosis, and cancer). In this study, a novel method has been developed for classifying the subfamilies...
متن کاملClassification of Nuclear Receptors Based on Amino Acid Composition and Dipeptide Composition*□S
Nuclear receptors are key transcription factors that regulate crucial gene networks responsible for cell growth, differentiation, and homeostasis. Nuclear receptors form a superfamily of phylogenetically related proteins and control functions associated with major diseases (e.g. diabetes, osteoporosis, and cancer). In this study, a novel method has been developed for classifying the subfamilies...
متن کاملA Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)
Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Bioengineering and Biotechnology
سال: 2019
ISSN: 2296-4185
DOI: 10.3389/fbioe.2019.00215